A Direct Test of Legislative Gatekeeping

Abstract

Tests of legislative gatekeeping theories have been hampered by the absence of status quo estimates, making these tests vulnerable to selection bias. I overcome this problem with a novel dataset on position-taking by private interests in Iowa, Nebraska, and Wisconsin, because these data record organizations’ positions on lobbied bills irrespective of whether the bills receive floor consideration. This permits an estimation of the ideological locations of status quo policies for bills with and without floor consideration, and in turn rigorous empirical tests of agenda control theories. The data provide substantial evidence of gatekeeping, and can adjudicate among specific models of gatekeeping in specific circumstances. In particular, they corroborate partisan gatekeeping in the Iowa House and the Wisconsin Assembly, and cannot distinguish between partisan and nonpartisan accounts in the other chambers. This shows how parties use legislative institutions to control the agenda, and influence the political process in lower chambers.

Word Count: 9508
Introduction

Which bills are enacted and which bills never receive consideration on the floor? Committees and other legislative institutions shape the legislative agenda by promoting some bills for consideration and blocking others, thereby helping to determine which bills are ultimately enacted into law. However, it remains an open question how committee members and legislative leaders use their procedural rights to exercise gatekeeping. Does the majority party act as a procedural cartel (Cox and McCubbins 2005, 2007) to deny floor consideration to bills where a vote between a proposal and the status quo policy would find a majority of the majority party on the losing side? Or, do minorities with procedural rights act efficiently and without a partisan lens to screen out those bills that are unlikely to find the support of institutional veto players (Crombez, Groseclose, and Krehbiel 2005; Krehbiel 1998, Ch. 10)?

Which bills receive floor consideration has important consequences not only for which bills can pass, but also which legislative coalitions can form (Snyder 1992a), and which public policies legislators are expected to take positions on. From a normative perspective, gatekeeping that anticipates the preferences of institutional veto players would be evidence of an efficient distribution of work within the legislature (Crombez, Groseclose, and Krehbiel 2005), notwithstanding different potential normative evaluations of the policy gridlock – or stability – induced by those veto players.

At the same time, partisan gatekeeping may be desirable if responsible parties serve as an integrating mechanism and a necessary requirement for representative democracy (American Political Science Association 1950; Bryce 1888; Cox and McCubbins 2005, 229; Schattschneider 1942). Alternatively, “responsible-party government” may be viewed as problematic if legislators are expected to represent their local constituents (e.g., Miller and Stokes 1963). Moreover, to the extent
that partisan gatekeeping marginalizes moderate legislators (Cox and McCubbins 2005, 31), it may contribute to a “democratic deficit” in that enacted bills implement policies that are too extreme for voters (Lax and Phillips 2012, 164). These questions are especially important due to the recent increase in the number of state legislatures that are controlled by one party (Badger, Bui, and Pearce 2018).

Previous empirical tests of gatekeeping have lacked information about status quo locations and proposals, especially for bills that never receive a vote. This absence has hindered a strong empirical validation of pivotal politics theories (Clarke, Gray, and Lowande 2018), as well as other theories of lawmaking. Selection bias in prior tests arose not only from the absence of pre-floor measures, but also a conflation of positive and negative agenda control (Jenkins and Monroe 2016). Further, extant analyses using estimates from ideal point models and roll call votes to test theories of lawmaking have been subject to the critique that the estimates generated by an endogenous agenda conforming to either of several theories (e.g., the pivotal politics or party cartel theories) may be too imprecisely estimated to distinguish between them (Clinton 2007).

In this paper, I use both floor and pre-floor data from the state legislatures of Iowa, Nebraska, and Wisconsin for a direct test of gatekeeping. These states’ legislatures require or permit lobbyists to declare the position they are communicating towards legislators on behalf of their principals at different times in the legislative process.Treating private interests’ positions as final passage votes on bill versions permits estimating the ideological positions of private interests and legislators in the same space, using a Bayesian item-response model (Thieme Forthcoming).

More importantly for the current application, group positions on bills that receive floor consideration and bills that do not, allow me to estimate the spatial locations of status quos associated with both sets of bills. This provides a data-driven approach to addressing the endogeneity of the
agenda, and permits a direct measure of gatekeeping which is not confounded by conflating negative and positive agenda control: the proportion of blocked bills out of the bills that are predicted to be blocked by a particular gatekeeping hypothesis. I compare this ratio to a plausible null hypothesis of “random gatekeeping” for a direct test of nonrandom gatekeeping hypotheses. Further, I compare the performance of partisan and the nonpartisan hypotheses against each other.

The analysis provides substantial evidence of nonrandom gatekeeping and, unsurprisingly, shows that many bills are introduced even though they are likely to be blocked, suggesting either uncertainty or pure position-taking. Furthermore, comparing the distributions of status quo positions, I find evidence that favors partisan gatekeeping in some chambers (the Iowa House and the Wisconsin Assembly), but cannot distinguish between partisan and nonpartisan hypotheses in others (the Iowa Senate, the Nebraska Legislature, and the Wisconsin Senate). The results show how parties use partisan legislative institutions to exercise negative agenda control, and influence the political process in lower chambers. Furthermore, I conduct a direct examination of the pivotal politics theory’s main prediction that status quos located within the gridlock interval will not move (Krehbiel 1998). I find supportive evidence for this prediction in Iowa and Nebraska, but not in Wisconsin.

Background

The research on legislative agenda control is part of a broader set of questions about the role of parties in lawmaking in American politics. On the one side are accounts by partisan theories in which majority party leadership, especially in the U.S. House of Representatives, affects legislative outcomes either by applying pressure to ensure party-line voting (Aldrich 1995) or by acting
as a procedural cartel (Cox and McCubbins 2005, 2007). In the latter theory’s view, the majority party’s agents exercise negative agenda control mainly via *gatekeeping*, especially through the pre-floor screening of bills in committees, to keep bills off the floor agenda which would be opposed by a majority of members of their party. More precisely, the party cartel theory predicts that bills with status quos in the *majority party blockout zone* should not receive consideration on the floor of the chamber (Cox and McCubbins 2005, 43).

On the other side, the nonpartisan pivotal politics theory (Krehbiel 1998) emphasizes the primitive preferences of legislators and institutional veto players. The theory predicts no policy change for bills with status quo policies in the gridlock interval. While the pivotal politics theory does not explicitly incorporate gatekeeping, Crombez, Groseclose, and Krehbiel (2005) suggest that ostensible gatekeeping is consistent with committees or members with procedural rights anticipating a gridlock interval. In the main analysis, I therefore test the pivotal politics-consistent hypothesis that bills with status quos in the gridlock interval will be denied floor consideration. In a supplementary analysis, I return to the explicit prediction of the pivotal politics model by examining the extent to which bills with status quos in the gridlock interval are enacted. Figure 1 illustrates each theory’s censored interval, as well as the predicted outcome based on the status quo and the preferences of key actors.

1Krehbiel, Meirowitz, and Wiseman (2015) develop a theory that includes majority and minority party influence.
2Positive agenda control has been defined as ‘the ability to push bills through the legislative process to a final-passage vote on the floor’ (Cox and McCubbins 2005, 20). In this paper, I concentrate on the party cartel theory, as it emphasizes the importance of gatekeeping.
3The majority party blockout zone extends from the floor median to a position that has the same distance to the majority party median as the floor median, but is on the other side of the majority party median.
4Examples of such institutional veto players are the filibuster pivot, the president, and the veto override pivot. See Brady and Volden (2006) for a similar argument. For examples of hybrid pivot-and-party models, see Chiou and Rothenberg (2003), Cox and McCubbins (2005, 177-181), or Peress (2013).
5Krehbiel (1998, 35) defines gridlock as the absence of policy change despite the existence of a majority that favors a change. The gridlock interval is determined by the configuration of the pivotal actors.
6This is also implied by Krehbiel (1998, Ch. 10). Kypriotis’ (2013) strong majoritarian version of the Committee Bill Reporting model assumes that committees will act as if they shared the preferences of the chamber median.
Figure 1: The Party Cartel and the Pivotal Politics Theory

Note: The panels show bill outcomes predicted by the party cartel (left) and the pivotal politics theory (right) as a function of the status quo and the preferences of key actors. They also show the intervals for which no policy change is expected. The party cartel theory predicts that bills with status quos in the majority party blockout zone will not receive floor consideration. The blockout zone \([2D-m, m]\) is determined by the chamber median \((m)\) and the majority party median \((D)\). The example gridlock interval \([p, f]\) is determined by the presidential pivot \((p)\) and the filibuster pivot \((f)\) (see Krehbiel 1996, 22). Since bills with status quos in the gridlock interval are predicted not to pass, a pivotal-politics consistent gatekeeping hypothesis is that members with procedural rights will keep such bills from receiving floor consideration.

Previous empirical tests of gatekeeping have been limited by the absence of direct estimates about bill proposal and status quo locations (Clarke, Gray, and Lowande 2018), especially for bills that never receive floor consideration.\(^7\) Instead, many studies (e.g., Cox and McCubbins 2005; Gailmard and Jenkins 2007; Cox, Kousser, and McCubbins 2010; Jackman 2014) have tested theories of negative agenda control using floor-based measures, such as the majority and minority party roll counts or roll rates.\(^8\) The results from these studies have tended to find evidence supporting the party cartel theory, both in Congress and in state legislatures.\(^9\)

\(^7\)Peress (2013), Richman (2011), and Woon and Cook (2015) are partial exceptions to this. Peress (2013) directly estimates status quos for bills that receive floor consideration (see below). Woon and Cook (2015) use structural models that account for temporal dependence to generate probability distributions of status quo policies. Richman (2011) directly estimates status quos for broad policy areas, but does not examine gatekeeping on individual bills. Richman (2011) and Woon and Cook (2015) find that a combination of pivots and party best explains the data.

\(^8\)The majority party is rolled if a bill or motion passes against the opposition of a majority of its members. The roll rate is defined as the ratio of minority to majority party rolls. Low majority party roll rates are taken as evidence in favor of partisan gatekeeping.

\(^9\)For example, Cox and McCubbins (2005, Ch. 5) find low majority party roll rates and relatively higher minority party roll rates in the House, and somewhat higher majority roll rates in the Senate. Further, Gailmard and Jenkins
However, using low majority roll rates as evidence for partisan gatekeeping is problematic for several reasons. First, roll rates, i.e., the ratio of minority to majority party rolls, conflate negative and positive agenda power by including minority rolls (Jenkins and Monroe 2016). Second, a credible test of partisan gatekeeping requires a baseline roll rate that could occur with behaviorally inconsequential parties (Krehbiel 2007). Third, special rules that reduce debate or the ability to offer amendments further limit the usefulness of roll call analyses (Schickler and Pearson 2009).

A more general problem with floor actions is that they can only reveal the “fingerprints” of the actual level of negative agenda control, because effective negative agenda control would imply that agents of the majority party are able to veto legislation at the pre-floor stage (Gailmard and Jenkins 2007; Jenkins and Monroe 2016). A convincing test between competing hypotheses should include not only majority party rolls, but also successful blocks by the majority party (Jenkins and Monroe 2016; Krehbiel, Meirowitz, and Woon 2005). To illustrate this point, consider two different legislatures, each with two majority party rolls, but with a different number of blocked bills. In the first legislature, two bills that would have rolled the majority are blocked in committee. In the second case, eighteen such bills are blocked. Arguably, the degree of negative agenda control is higher when committees block 90% rather than 50% of potential majority party rolls.10

A second line of research on negative agenda control has employed cutpoints of final passage votes estimated using item-response models or W-NOMINATE scaling (Poole et al. 2011), result-

(2007) show that when excluding nominations, the Senate shows similar majority roll rates to the House. Cox, Kousser and McCubbins (2010) investigate the effects of institutional changes on the majority and minority roll rates, as well as the direction of policy change, by exploiting two quasi-experiments in California and Colorado. Moreover, Anzia and Jackman (2013) find that “gatekeeping institutions” – the ability of majority-appointed committees to deny a hearing and the option not to report bills out of committee – reduce majority party roll rates in state legislatures. Using similar data, Jackman (2014) finds that this is mitigated by majoritarian rules.

10Of course, this example only considers bills that are introduced. A measure of gatekeeping that would incorporate bills that are never introduced would have to rely on assumptions about when a proposal is made, or a credible source of plausible bill proposals.
ing in mixed findings with respect to the party cartel theory (Krehbiel, Meirowitz, and Woon 2005; Clinton 2007; Stiglitz and Weingast 2010). Krehbiel, Meirowitz, and Woon (2005) derive a set of intervals for which observed cutpoints in the U.S. Senate are inconsistent with either theory and compare the percentage of final passage votes with cutpoints in those intervals. However, based on the differing sizes of the censored intervals, the authors argue that the theories are faced with varying levels of exposure to falsification, which is a version of the “fingerprints” critique mentioned above. To adjust for differential exposure, they assume an “atheoretic” normal distribution of cutpoints as a null hypothesis. A different critique of cutpoint analyses is that the ideal point estimates generated by an endogenous agenda conforming to either the pivotal politics or party cartel theory may be too imprecisely estimated to distinguish between them (Clinton 2007). This critique is based on the argument that cutpoints would be missing for the censored intervals. Hirsch (2011), Clinton (2012), and Krehbiel and Peskowitz (2015) show that whether this is a problem depends on the amount of error that is present in roll call voting.

A third approach is to directly estimate ideal points, proposal locations and status quo positions on the same scale via a statistical model that combines roll call votes with cosponsorship data (Peress 2013). Here, bill positions are estimated at final passage – or functionally equivalent – votes via the cosponsors of the originally introduced bill (unamended bills), or via the cosponsors of the last successful amendment (amended bills). Status quo positions are then calculated as the reflection of the proposal’s position on the estimated cutpoint. The results from Peress’s (2013) analysis of bills in the U.S. Senate support the hypothesis of partisan gatekeeping. However, the analysis is limited to bills that receive a final passage vote, and does not examine what types of

bills are blocked.

A Direct Test of Gatekeeping

I develop a direct test of gatekeeping that leverages mandatory state-level disclosure by lobbying principals, as well as legislators’ votes and cosponsorship decisions to address the challenges faced by previous tests of negative agenda control. In particular, the positions by lobbying principals on bills that are reported out of committee and bills that die in committee allow me to estimate status quos for both sets of bills. Moreover, data on bill cosponsorship decisions reveal additional information about the positions of bill proposals (e.g., Peress 2013; Woon 2008). I combine positions of lobbying principals with legislative roll call votes and bill cosponsorship decisions in a joint statistical model of bill cosponsorship and voting to directly estimate the status quos (Peress 2013).

This approach permits a more direct measure of gatekeeping, the number of bills that are actually blocked as a proportion of the number of bills that are predicted to be blocked by a specific gatekeeping hypothesis. Unlike roll rates, this *gatekeeping ratio* is not confounded by including positive agenda control (Jenkins and Monroe 2016). Further, it eliminates the need to adjust the test with an assumed exposure to bill cutpoints (Krehbiel, Meirowitz, and Woon 2005). In addition, by jointly scaling lobbying principals and legislators, the principals’ positions on bills that are kept off the agenda can reduce the danger that the estimates will suffer from imprecision due to an endogenous agenda. The estimates therefore enable a data-driven approach to addressing a prominent critique of using ideal point estimates and cutpoints to test theories of lawmaking (Clinton 2007, 2012; Hirsch 2011; Krehbiel and Peskowitz 2015).

I compare the gatekeeping ratio to a plausible null hypothesis of “random gatekeeping” – the
proportion of bills with status quo estimates that are blocked. Since status quos are estimated in a Bayesian MCMC model, I employ credible sets (Thulin 2014) of the difference between predicted and actual proportions for direct tests of the gatekeeping hypotheses. Further, I compare the relative performance of the partisan and nonpartisan hypotheses.

Data

Lobbyist Declarations in the Iowa, Nebraska, and Wisconsin state legislatures provide a novel source of position-based data for estimating private interests’ and legislators’ positions in a common space (Thieme Forthcoming). Previous studies have used interest group positions from legislator ratings to estimate the ideology of legislators and these organizations on the same scale (Gerber and Lewis 2004; Poole and Rosenthal 2007). However, not only are these ratings relatively rare, but also voluntary disclosure of positions may induce substantial bias, including artificial extremism (Snyder 1992b).

Although all 50 states have some reporting requirements for lobbyists who lobby their legislatures, disclosure requirements vary substantially by state. Current lobbying rules in Iowa, Nebraska, and Wisconsin are unusual in that they require lobbyists to report the bills on which they lobby legislators, as well as the principal on whose behalf they lobby on each bill. Crucially, they also require or permit lobbyists to declare their principals’ positions on lobbied bills. Nevertheless, there are several differences in the reporting requirements. First, lobbyists in Iowa and Nebraska are required to report their principals’ positions, while lobbyists in Wisconsin may leave the position undisclosed. Second, the states differ in how quickly lobbyists have to report lobby-

\(^{12}\)For an overview from the National Conference of State Legislatures, see http://www.ncsl.org/research/ethics/50-state-chart-lobbyist-registration-requirements.aspx.

\(^{13}\)Between 2003 and 2016, only 16.7% of positions were not disclosed. To address this and to augment the data, I collected positions registered by legislators and lobbying principals at committee hearings in Wisconsin (2003-2016).
ing activity and in their options for reporting positions. Finally, the states differ in how far back in time data is made available online.\footnote{Appendix A provides more details on the reporting requirements in the three states.}

I assembled a dataset of all lobbyist declarations from Iowa, Nebraska, and Wisconsin between 2003 and 2016.\footnote{Since lobbyist declarations in Iowa before 2005 did not include the lobbyists’ principals, these declarations are not used in the analysis.} For all three states, I further collected roll call data, bill histories, committee leadership data, and bill (co-)sponsorship data from 2003 through 2016. In addition, I collected bill cosponsorship data to construct a matrix of legislators’ cosponsorship decisions. For a supplementary analysis, I also collected data on the sponsor of each bill. To determine the positions of Iowan and Wisconsinite governors on bills, I employed bill histories and cosponsorship data.\footnote{In Iowa, lobbyist registrations are also made on behalf of state agencies and the Governor’s Office.}

In particular, I used bill sponsorship data and bill histories to find bills that were introduced on behalf of the governor. Moreover, I employed the bill histories to find bills that were signed into law (without partial veto), which should reduce the potential for artificially extreme ideal point estimates of the executive (see Treier 2010). Finally, I used the bill histories to find bills that received a full veto from the governor. To find information about party affiliation in Nebraska, I consulted the biannual Blue Books.

Combining Position-Based Data from Multiple Sources

I use the lobbyist declaration data from each state to construct three separate vote matrices that combine principals’ positions with roll call votes in the Iowa, Nebraska, and Wisconsin state legislatures. For each state’s legislature, I employ the bill histories to find the dates of successful amendments so as to determine which bill version was current at a particular date. I assume that any amendment approved by a floor vote constitutes a change in the version of a bill. Further, I
assume that any declaration applies to the then-current bill version, and not to previous versions. I then assemble the vote matrix by combining the principals’ positions on bill versions with roll call votes via bill versions whenever a bill version is associated with a final passage vote. When bill versions are not associated with a roll call vote – for example, because a bill died in committee – I add the positions associated with the bill version to the matrix as a separate column.17

Estimating Status Quo Positions

To estimate the status quo positions of proposed bills, I combine data from roll call votes, lobbying declarations, bill cosponsorships, and legislator covariates to estimate a joint model of voting and bill cosponsorship, based on the model developed by Peress (2013). The first part of the model consist of a standard item-response model, based on a spatial model of voting (e.g., Bafumi et al. 2005; Clinton, Jackman, and Rivers 2004). It relies on a vote matrix to estimate the cutpoint and discrimination parameters of votes, as well as the ideal points of elected officials and lobbying principals.18 The second part of the model uses bill cosponsorship decisions, bill-fixed effects, as well as legislator covariates on party affiliation and committee leadership to estimate the positions of bill proposals on the same ideological dimension as that recovered from the voting model.19

Based on the assumption of symmetric preferences, the status quo can be calculated as the reflection of the proposal location on the estimated cutpoint, i.e. \(\hat{s}_t = 2\hat{\tau}_t - \hat{p}_t \).20 This approach provides an alternative to the estimation of status quos via the voting data alone, and does not rely

17Appendix B.1 provides further details on how votes and positions from declarations are combined via bill versions. Appendix B.2 describes how lobbyist declarations and positions from committee registrations are combined with roll call votes via bill versions. Appendix B.3 describes the procedure for merging or splitting the position-record of principals across sessions of the same state.

18For bills without floor consideration, the estimates are based on lobbying declarations. For bills with floor consideration, the estimated are based on roll call votes and lobbying declarations.

19Following Peress (2013, 619), I restrict attention to bills with at least 3 cosponsors.

20Here, \(\hat{s}_t \), \(\hat{\tau}_t \) and \(\hat{p}_t \) are the status quo, cutpoint and proposal location estimates for bill \(t \).
on assumptions about bill-specific errors for identification (Peress 2013). However, since many bills lack cosponsors it also limits the number of bills for which status quos can be estimated with sufficient accuracy (Peress 2013, 619).

To obtain status quo estimates for a larger set of bills, I employ adjusted vote-based status quo estimates when a lack of cosponsorships prevents a sufficiently accurate estimate of p_t. In particular, instead of relying on the strong assumption of a homogenous bill-specific error standard deviation (σ), I adjust vote-based status quos using estimates of bill-group specific σ_g. This approach increases the number of estimates from 79 to 760 (Iowa House), from 45 to 628 (Iowa Senate), from 135 to 531 (Nebraska), from 534 to 614 (Wisconsin Assembly), and from 388 to 501 (Wisconsin Senate).

The joint model differs from Peress (2013) in several ways. First, the voting model is parameterized to estimate a cutpoint parameter τ_t. Moreover, the two parts of the model only share information about the ideal point parameters and not also about bill positions and status quos. This allows me to compare status quos identified via cosponsorships and vote choice with the status quo estimates based only on vote choices. Finally, I use a logistic, instead of a normal distribution function to model the error terms i.e., $F = \logit^{-1}$. I implement the model using the programming language Stan (Carpenter et al. 2017) via the R package rstan (Stan Development Team 2017).

21 NOMINATE models identify the proposal and status quo location from the data via the choice of a scaling parameter and the non-linearity of the choice function (see Carroll et al. 2009, 567).

22 This is especially limiting in Iowa, where most bills are introduced by committees and only about 26% of proposals between 2003 and 2016 had at least one cosponsor, compared with approx. 78% in Wisconsin.

23 The groups are based on chamber, session, and majority party status. See Appendix C.1 for more details.

24 In the sample, the number of bills with floor consideration is 325 (43%), 325 (52%) 71 (13%), 321 (52%), and 253 (51%), respectively.

25 Before presenting the main results, I compare the cosponsorship-based status quos with the adjusted vote-based status quos. In Appendix D, I also compare cosponsorship-based status quo estimates with vote-based status quos assuming homoskedasticity ($\sigma_t = 1$, for all t), and with status quos based on assumptions about the proposal location. Moreover, Appendices F.1 and F.2 present results from a series of alternative estimates. For each set of estimates, the results are substantially very similar to the main results.

26 See Appendix C.2 for more details about the estimation.
Adapting Gatekeeping Hypotheses to State Legislatures

Since the party cartel and pivotal politics gatekeeping hypotheses are derived from theories about lawmaking in Congress, it is worth discussing to what extent the hypotheses should apply to state legislatures with a different set of rules and institutions, and whether the predictions need to be modified to be applicable. In Iowa and Wisconsin, chamber rules put majority party legislators in positions that enable them to block legislation, in a way that is largely consistent with the party cartel theory (Cox and McCubbins 2005, Chapter 3). In particular, agents of the majority party are in the position to assign or reassigning the chairs of committees. Further, committees in Iowa and Wisconsin have the ability to deny a bill a hearing and are not required to report all bills to the floor (Anzia and Jackman 2013). Moreover, agents of the majority party have procedural rights to control the floor agenda.

The nonpartisan Nebraskan legislature provides a difficult test for the partisan gatekeeping hypothesis, since its rules do not recognize a majority party, and since senators elect the Speaker and committee chairs via secret ballots. Further, its rules require a public hearing for almost all bills, and facilitate withdrawing bills from committees (Rule 3, Sec. 13 (b), Rule 5, Sec. 12 and Rule 3, Sec. 14). Although Democrats are frequently elected to chair committees and may hold a majority of committee seats (Schaffner 2007, 483), all sessions in the sample had a Republican majority and elected a Republican as Speaker. Therefore, I test the partisan gatekeeping hypothesis by calculating blockout zones using the median Republican senator.

27In 2005-2006, the Iowa Senate was split 25-25 and each committee had a Democratic and a Republican co-chair. Here, I adapt the party cartel theory’s prediction by using the union of the two blockout zones.
28Anzia and Jackman (2013) call these procedural rights nonhearing and nonreporting rights.
29See Appendix E.1 for details about majority party agenda control in Iowa and Wisconsin.
30See Rule 1, Sec. 1 (a) and Rule 3, Sec. 8 (a). In addition, the Nebraska Constitution (III-4) requires senators to be elected on a nonpartisan ballot.
Differences in the cloture requirements between Congress and the three state legislatures make it necessary to adjust the pivotal politics gatekeeping hypothesis. Unlike the U.S. Senate, the Iowa and Wisconsin legislatures only require a simple majority – not a supermajority – for a cloture vote to shut down a filibuster.31 Hence, the filibuster pivot in these states has to be replaced by one of the chamber medians. Since Iowa and Wisconsin both require two-thirds of elected members in each chamber to override a gubernatorial veto32 the veto override pivot needs no adjustment. Therefore, the gridlock intervals in Iowa and Wisconsin are given by the following lower and upper pivots:

\begin{align}
 p_l &= \begin{cases}
 \min(m_1, m_2) & \text{if } g \geq \max(m_1, m_2) \text{ or } m_1 > g > m_2 \text{ or } m_1 < g < m_2 \\
 \max(g, \min(v_1, v_2)) & \text{if } g \leq \min(m_1, m_2)
 \end{cases} \\
 p_u &= \begin{cases}
 \min(g, \max(v_1, v_2)) & \text{if } g \geq \max(m_1, m_2) \\
 \max(m_1, m_2) & \text{if } g \leq \min(m_1, m_2) \text{ or } m_1 > g > m_2 \text{ or } m_1 < g < m_2,
 \end{cases}
\end{align}

where \(m_1 \) is the lower chamber median, \(m_2 \) is the upper chamber median, \(g \) the governor, and \(v_1 \) and \(v_2 \) are the two-thirds veto override pivots in the respective chambers.

In Nebraska, 33 out of 49 senators are required to invoke cloture (Rule 7, Sec. 10).33 Since a gubernatorial veto override requires only 30 votes (Nebraska Const. Art. IV, Sec. 15 and Art. IV, Sec. 7), the filibuster pivots on either side of the median define the gridlock interval. Ordered from most liberal to most conservative, these are senators 17 and 33.

31While “fiscal” bills require a quorum of two-thirds of elected members (Wisc. Const. Art. VIII, Sec. 8), “fiscal bill” has been narrowly defined (Annotated Wisconsin Const., Art. VIII, Sec. 8, 60 Atty. Gen. 245).
32See Iowa Const. Art. III, Sec. 16 and Wisc. Const. Art. V, Sec. 10.
33See Appendix E.2 for more details about the filibuster in Nebraska.
A Direct Measure and Test of Gatekeeping

To assess the relative performance of each theory’s gatekeeping hypothesis, I use the following gatekeeping ratio \((GR)\). It measures the proportion of bills with status quos in a particular theory’s censored interval that are correctly predicted to receive no floor consideration. Formally,

\[
GR = \frac{N_{b, pb}}{N_{b, pb} + N_{-b, pb}},
\]

where \(N_{b, pb}\), is the number of bills that are blocked and are predicted to be blocked and \(N_{-b, pb}\) is the number of bills in the censored interval that receive floor consideration (are not blocked). This measure incorporates the insight that a convincing test between competing theories of negative agenda control should include not just failures to block, but also successful blocks of bills that are predicted to be blocked (Krehbiel, Meirowitz, and Woon 2005; Jenkins and Monroe 2016). A higher gatekeeping ratio indicates a better relative performance for the hypothesis associated with the predictions. For simplicity, I calculate the measure only based on decisions in the chamber where a bill was initially introduced.\(^{34}\)

Gatekeeping ratios are sensitive to the kind of original bill versions for which cutpoints can be estimated, as well as the relative frequency of estimates for blocked and reported bills. These depend on features of the data generating process, such as the number of principals’ positions on a bill, whether or not lobbying was two-sided, lobbyists’ reporting requirements, and whether bills were amended before passage. They also depend on minimum vote and lopsidedness requirements.

\(^{34}\)Further, I exclude estimates of votes that are not sufficiently correlated with the estimated dimension. I also exclude duplicate estimates due to multiple votes on the original bill version. In Iowa and Wisconsin, I exclude resolutions if they do not require the approval of the governor. In Nebraska, I exclude votes on appropriations tied to regular bills to avoid duplication. Additional details are available upon request.
that are applied to the vote matrix.35 This implies that value of the gatekeeping ratio does not have a straightforward interpretation by itself.

However, the relative value of a gatekeeping ratio can be used for a direct test of the different gatekeeping hypotheses. In particular, for each hypothesis and set of estimates I compare the gatekeeping ratio to the plausible null of random gatekeeping, which is given by the overall proportion of estimated bills that are blocked by committee. To characterize the model’s uncertainty about the gatekeeping ratios, I calculate the ratios for each of the samples from the posterior distribution and aggregate the ratios across samples. For each alternative hypothesis, I reject the null if the 95\%-credible intervals of the difference between the gatekeeping ratio and the proportion associated with random gatekeeping do not include zero.36 Similarly, I rely on 95\%-credible intervals to test the relative performance of the nonrandom gatekeeping hypotheses.

Results

Before presenting the main results, I show that the adjusted status quo estimates can provide an accurate approximation of the status quo estimates based on cosponsorship decisions. In Figure 2, I report the adjusted estimates against the cosponsorship-based estimates for Iowa, Nebraska, and Wisconsin. In each state, there is a strong correlation between the two sets of estimates (0.91, 0.70, and 0.87). Further, the regression lines generally track the 45-degree line closely, particularly in the ranges with the highest density of status quo estimates. This suggests that adjustments of vote-based status quos estimates via estimates of the heterogeneous error variance can be a convenient shortcut to estimating status quos via cosponsorship. Employing the adjusted status quos instead

35See Appendix B.1 for details about the lobbying disclosures that affect the data generating process and Appendix C.2 for details about the minimum vote and lopsidedness requirements.

36See Thulin (2014) for a decision-theoretic justification of testing a precise null using credible sets.
of the cosponsorship-based status quos increases the number of estimates from 1181 to 3034, an increase of more than 150%. In Iowa and Nebraska, the increases – from 124 to 1388 and from 135 to 531 – are particularly high.⁴⁷

Figure 2: Adjusted Status Quo Estimates Versus Cosponsorship-Based Status Quo Estimates

Note: The three panels compare vote-based status quo estimates that are adjusted for potential heteroskedasticity in σ by state, chamber, session, and majority-party status (horizontal axis) to status quos that are estimated using bill cosponsorship decisions and votes (vertical axis). The dashed blue lines represent 45-degree lines, and the solid red lines represent the respective regression lines. The regression coefficients are shown in the bottom right corner of each panel. The number of comparisons is 124 in Iowa, 135 in Nebraska, and 922 in Wisconsin.

Tests of Partisan and Nonpartisan Gatekeeping Hypotheses

In Figure 3, I show the results from a series of direct tests of nonrandom gatekeeping in Iowa, Nebraska, and Wisconsin. For each legislative chamber, I present the results from three hypothesis tests. The results in the first two panels examine whether the null hypothesis of random gatekeeping can be rejected in favor of the partisan party cartel or the nonpartisan pivotal politics gatekeeping hypotheses. The third panel tests the alternative hypothesis that there is a difference between the

⁴⁷Appendices F.1 and F.2 present results using unadjusted vote-based status quo estimates, estimates that rely on bill cosponsorships, and estimates that rely on assumed bill positions. For each set of estimates, the results are substantially very similar to the main results.
Figure 3: Tests of Gatekeeping Hypotheses

Note: The panels in this figure present hypothesis tests of nonrandom gatekeeping using the 95%-credible interval of the difference between two proportions. The first panel tests the party cartel hypothesis against a plausible null hypothesis: the proportion of estimated bills that are blocked. The second panel shows tests of the pivotal politics gatekeeping hypothesis against the plausible null. The third panel examines whether there is a difference between the performance of the party cartel and the pivotal politics gatekeeping hypotheses.

The first panel shows that the null hypothesis is rejected in favor of the party cartel hypothesis in both chambers of the Iowan and Wisconsinite legislatures. However, the null of random gatekeeping cannot be rejected in favor of the party cartel hypothesis in the Nebraska Unicameral. Further, based on the results in the second panel, the null hypothesis can be rejected in favor of the pivotal politics gatekeeping hypothesis in all five chambers.

In a direct comparison of the party cartel and pivotal politics hypotheses (Panel 3), the party cartel hypothesis performs better in two out of five chambers. In particular, based on the 95%-credible intervals we can reject the null of no difference between the gatekeeping ratios in the Iowa House and the Wisconsin Assembly. Due to model uncertainty, the tests cannot distinguish
between the party cartel and the pivotal politics gatekeeping hypotheses in the Iowa Senate, the Nebraska legislature, and the Wisconsin Senate.

Figure 4 presents status quo estimates from legislatures and sessions that are most representative of these overall results. The panels show status quo estimates of bills introduced in the 85th Iowa House, the 85th Iowa Senate, the 101st Nebraska legislature, the 96th Wisconsin Assembly, and the 97th Wisconsin Senate (Panels 9 and 10). Status quos for bills that receive floor consideration are shown in red, whereas the status quos of bills that do not receive floor consideration are shown in black.

Unsurprisingly, most bills that receive floor consideration are shown to have associated status quos that fall on the minority side of the ideological spectrum. In particular, chambers with a Republican tend to give floor consideration to bills with a “left” or “liberal” status quo, and chambers with a Democratic majority tend to give floor consideration to bills with a “right” or “conservative” status quo. This pattern, which is prominent in Iowa and Wisconsin, is consistent with the “second commandment” of party leadership described by Cox and McCubbins (2005, 24) as “[t]hou shalt aid bills that most in thy party like” which is meant to promote a record of legislative accomplishment and strengthen the party brand. It is also consistent with an ideological argument for party labels in which a higher variance of the party member’s positions is harmful to the party brand and therefore harmful to the electoral chances of the party’s candidates (Grynaviski 2010).

The pattern is not found in the Nebraska legislature, where the distribution of status quos for bills that receive floor consideration is more equally distributed and tends to fall outside of both censored intervals. Reflecting the main results, the proportion of bills that receive floor consideration is higher in the gridlock interval than the blockout zone in the Iowa House and both chambers of the Wisconsin legislature, about the same in the Nebraska legislature, and somewhat lower in
Figure 4: Estimated Status Quo Positions

Note: The panels in this figure show status quo estimates of bills introduced in the Iowa House (2013-2014), Iowa Senate (2013-2014), Nebraska legislature (2009-2010), Wisconsin Assembly (2003-2004), and Wisconsin Senate (2005-2006). The panels in the left column displays the distribution of estimates, while the right column focuses on the estimates that lie in the censored intervals. Status quo estimates of bills for bills that receive floor consideration are shown in red, whereas those that do not receive floor consideration are shown in black. The panels also show the censored intervals associated with the partisan and nonpartisan gatekeeping hypotheses. The blockout zone is shown in light gray, the gridlock interval in medium gray, and the intersection in dark gray.
the Iowa Senate.

Tests of the Gridlock Hypothesis

In this section, I return to the explicit prediction of the pivotal politics theory, that no legislation will be enacted which has an associated status quo in the gridlock interval. In this interpretation, the gridlock interval is not a censored interval in that enactment, not floor consideration, of bills with status quos in the gridlock interval is a violation of the theory’s prediction (see Peress 2013, 615). To test the prediction, I employ the *gridlock ratio* (GR2) which measures the proportion of bills with status quos in the gridlock interval that fail to be enacted. I compare this measure to a plausible null of random bill passage which is given by the overall proportion of estimated bills that fail to be enacted. Since enactment requires approval of the entire legislature and the governor, the gridlock ratio is measured at the state-level.

Figure 5 shows the results from tests of the gridlock hypothesis. For each state, the proportion of bills with estimates that are not enacted is subtracted from the gridlock ratio. We can reject the null of random bill passage in favor of the gridlock hypothesis in two out of three states. While the null is rejected in Iowa and Nebraska, the gridlock hypothesis does not perform better than chance in Wisconsin. Moreover, there is substantial variation in the extent to which there are violations of the gridlock hypothesis. In particular, whereas none of the status quo estimates from the Nebraska legislature violate the gridlock hypothesis, approximately 12% of estimates violate the assumption in Iowa. Of the estimates from the Wisconsin legislature, about 29% are not consistent with the gridlock hypothesis.
Discussion

The analysis provides substantial evidence of nonrandom gatekeeping and, unsurprisingly, shows that many bills are introduced even though they are likely to be blocked, suggesting either uncertainty or pure position-taking. In particular, the credible null of random gatekeeping can be rejected in favor of the pivotal politics-consistent hypothesis in all five chambers. Further, the party cartel prediction, when tested in isolation, finds support in both chambers of the Iowa and Wisconsin legislatures, but not in Nebraska. The null result in Nebraska is consistent with the party cartel theory in that it assumes that partisan legislative institutions, such as majority party committee leadership positions and legislative leaders with procedural rights, are a requirement for partisan gatekeeping. However, these institutions are not established in the nonpartisan Nebraska legislature. Therefore,
the results speak to the influence that institutions may have on legislative decision-making. More generally, the good performance of both hypotheses suggests that each theory provides a more convincing explanation of gatekeeping than an atheoretical account.

In a direct comparison of the party cartel and pivotal politics-consistent hypothesis, the former outperforms the latter in the lower chambers of the Iowan and Wisconsinite legislatures. This shows how parties use partisan legislative institutions to exercise negative agenda control, and influence the political process in lower chambers. Moreover, the tests cannot distinguish between the hypotheses in Nebraska and the state Senates of Iowa and Wisconsin. There are several possible reasons for the failure to distinguish between the hypotheses in these three chambers.

First, particularly in Wisconsin, chamber rules allow senators to circumvent gatekeeping by party leaders in a way that is similar to the U.S. Senate (e.g., Pearson 2008). Further, in Nebraska, the role of committees in screening out bills is limited since public hearings are generally required, and a majority of senators can withdraw bills from committees.\(^{38}\) Moreover, it could be that – similar to senators in the U.S. Senate – the longer campaign cycle for legislators in upper chambers reduces electoral pressures (Jacobson and Carson 2016, Ch. 4), thereby motivating committee chairs and legislative leaders to screen out policy proposals that are unlikely to be enacted, rather than schedule votes on bills for the purpose of position-taking.\(^{39}\) The results therefore speak to extant research which examines differences in party effects between the U.S. House and the U.S. Senate (e.g., Campbell, Cox, and McCubbins 2008; Monroe, Roberts, and Rhode 2008).

\(^{38}\)In Nebraska, the inability to distinguish between the hypotheses may also partly be a result of the low proportion of status quo estimates for bills that receive floor consideration (13%).

\(^{39}\)Based on the strong performance of the pivotal politics consistent gatekeeping hypothesis in the Iowa Senate, and Republican majorities in the Iowa House during most of time between 2005 and 2016, this account may be particularly relevant in the Iowa Senate. The focus on passing legislation is clear in the quote from former Senate Majority Leader Michael Gronstal (D) that during a time of split control of the Iowa Legislature lawmakers still “managed to pass property tax reform, health reform – there were many grand bargains made” (Kurtz 2017).
Since the pivotal politics model does not explicitly incorporate gatekeeping, one could argue that legislative gatekeeping is not the most appropriate ground for it to be tested on. Therefore, I conduct a supplemental analysis in which I directly test the theory’s explicit prediction that there will be no policy change when a status quo for a proposed policy is located within the gridlock interval. I test the prediction against the null hypothesis of random bill (non)enactment and find support for it in Iowa and Nebraska, but not in Wisconsin. Apparent violations of the prediction in Wisconsin (and Iowa) allow for several interpretations, including the possibility of vote buying, party pressure (e.g., Volden and Bergman 2006; Krehbiel 1998, Ch. 8), unmeasured differences in bill quality (Hitt, Volden, and Wiseman 2017), or uncertainty about the state of the world (McCarty 2018).

The results presented in this paper also provide evidence on the subject of positive agenda control. Perhaps unsurprisingly, most bills that receive floor consideration are shown to have associated status quos that fall on the minority side of the ideological spectrum. This pattern, which is prominent in Iowa and Wisconsin, is consistent with a majority party leadership that promotes a record of legislative accomplishment to strengthen the party brand (Cox and McCubbins 2005). It is also consistent with an ideological argument for party labels in which a higher variance of the party member’s positions is harmful to the party brand, and therefore harmful to the electoral chances of the party’s candidates (Grynaviski 2010). Without a supermajority requirement to shut down a filibuster makes, it becomes a viable strategy to pass bills without bipartisan support (Pearson 2008, 119). As candidates for the state legislature in Nebraska are elected on a nonpartisan ballot, it is no surprise that the same pattern is not apparent for bills that receive floor consideration in the Nebraska legislature.

While the possibility of selection bias in the types of bills on which lobbying principals take
positions cannot be entirely ruled out, the positions from lobbying disclosures permit estimates of a large number of bills that are kept off the legislative agenda. The analysis therefore provides a new approach to address the critique that estimates generated by an endogenous agenda conforming to either the pivotal politics theory or the party cartel theory may be too imprecise to allow for distinctions between the theories (Clinton 2007).

I leave for future research and more thorough examination the question of whether partisan or non-partisan gatekeeping is more actively employed by Democrats or Republicans.40 Since previous research has shown that legislators’ utility functions in Congress can be estimated as Gaussian (Carroll et al. 13), a joint model of cosponsorship and voting with Gaussian utility would be a promising extension of the analysis in this paper. In addition, extant research suggests several additional gatekeeping and gridlock hypotheses to be tested (e.g., Cox and McCubbins 2005, Ch. 8; Chiou and Rothenberg 2003; Peress 2013, 614-616).

40Data from lobbying disclosures in additional years, as well as additional states that comprehensively disclose lobbying principals’ positions (Colorado, Montana, New Jersey, and Rhode Island) will provide greater purchase on this question.
References

